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PART 1. ON STRESSES AND STRAINS*.

ArricLE I.—Initial Definitions and Explanations.

Def. A STRESS is an equilibrating application of force to a body.

Cor. The stress on any part of a body in equilibrium will thus signify the force
which it experiences from the matter touching that part all round, whether entirely
homogeneous with itself or only so across a portion of its bounding surface.

Def. A strain is any definite alteration of form or dimensions experienced by a -

solid.

Examples. Equal and opposite forces acting at the two ends of a wire or rod of any substance
constitute a stress upon it. A body pressed equally all round, for instance 5ny mass touched by
air on all sides, experiences a stress. A stone in a building experiences stress if it is pressed upon
by other stones, or by any parts of the structure, in contact with it. Any part of a continuous
solid mass simply resting on a fixed base experiences stress from the surrounding parts in conse-
quence of their weight. The different parts of a ship in a heavy sea experience stresses from which
they are exempt when the water is smooth.

If a rod of any substance become either longer or shorter it is said to experience a strain. If a
body be uniformly condensed in all directions it experiences a strain. If a stone, a beam, or a mass
of metal, in a building, or in a piece of framework, becomes condensed or dilated, in any direction,
or bent, or twisted, or distorted in any way, it is said to experience a strain, to become strained, or
often in common language, simply “to strain.” A shipis said “ to strain” if in launching, or when
working in a heavy sea, the different parts of it experience relative motions,

ArricLE 11.—Homogeneous Stresses and Homogeneous Strains.

Def. A stress is said to be homogeneous throughout a body when equal and
similar portions of the body, with corresponding lines parallel, experience equal and
parallel pressures or tensions on corresponding elements of their surfaces.

Cor. When a body is subjected to any homogeneous stress, the mutual tension or
pressure between the parts of it on two sides of any plane amounts to the same per

* These terms were first definitively introduced into the Theory of Elasticity by Ranking, and I have found
them very valuable in writing on the subject. It will be seen that I have deviated slightly from Mr. RANKINE's
definition of the word * stress,” as I have applied it to the direct action experienced by a body from the matter
around it, and not, as proposed by him, to the elastic reaction of the body equal and opposite to that action.
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unit of surface as that between the parts on the two sides of any parallel plane ; and
the former tension or pressure is parallel to the latter.

A strain is said to be homogeneous throughout a body, or the body is said to be
homogeneously strained, when' equal and similar portions with corresponding lines
parallel, experience equal and similar alterations of dimensions.

Cor. All the particles of the body in parallel planes remain in parallel planes,
when the body is homogeneously strained in any way.

Ezamples. A long uniform rod, if pulled out, will experience a uniform strain, except near its ends.
In a pillar bearing a weight in comparison with which its own may be neglected, there will be a
sensible heterogeneousness of the strain up to the middle from each end, because of the circum-
stances that prevent the ends from expanding laterally to the same extent as the middle does.

A piece of cloth held in a plane and distorted so that the warp and woof, instead of being perpen-
dicular to one another, become two sets of parallels cutting one another obliquely, experiences a
homogeneous strain. The strain is heterogeneous as to intensity, from the axis to the surface of a
cylindrical wire under torsion, and heterogeneous as to direction in different positions in a circle
round the axis.

ArticLE II1.—On the Distribution of Force in a Stress.

Theorem. In every homogeneous stress there is a system of three rectangular planes,
each of which is perpendicular to the direction of the mutual force between the
parts of the body on its two sides. ‘

For let P(X), P(Y), P(Z) denote the components, parallel to X Y, Z, any three
rectangular lines of reference, of the force experienced per unit of surface at any por-
tion of the solid bounded by a plane parallel to (Y, Z); Q(X), Q(Y), Q(Z) the cor-
responding components of the force experienced by any surface of the solid parallel
to (Z, X); and R(X), R(Y), R(Z) those of the force at a surface parallel to (X, Y).
Now by considering the equilibrium of a cube of the solid with faces parallel to the
planes of reference, we see that the couple of forces Q(Z) on its two faces perpendi-
cular to Y is balanced by the couple of forces R(Y) on the faces perpendicular to
Z. Hence we must have

Q(Z) =R(Y).
Similarly, it is seen that

R(X)=P(Z),
and ’

P(Y) =Q(X).

For the sake of brevity, these pairs of equal quantities, being tangential forces
respectively perpendicular to X, Y, Z, may be denoted by T(X), T(Y), T(Z).
Consider a tetrahedral portion of the body (surrounded it may be with continuous
solid) contained within three planes A, B, C, through a point O parallel to the planes
of the pairs of lines of reference, and a third plane K cutting these at angles «, 3, y
respectively ; so that as regards the areas of the different sides we shall have

A=Kcose, B=KcosB8, C=Kcosy.
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The forces actually experienced by the sides A, B, C have nothing to balance them
except the force actually experienced by K. Hence those three forces must have a
single resultant, and the force on K must be equal and opposite to it. If, therefore,
the force on K per unit of surface be denoted by F, and its direction cosines by
I, m, n, we have

F.K.I =P(X)A+T(Z)B+T(Y)C,
F.K.m=T(Z)A+Q(Y)B+T(X)C,
F.K.n =T(Y)A+T(X)B4+R(Z)C;

and, by the relations between the cases stated above, we deduce
Fl =P(X) cosa-+T(Z) cos B+T(Y) cos y,
Fm=T(Z) cos e+ Q(Y) cos B+T(X) cos y,
Frn =T(Y) cos a+T(X) cos B+R(Z) cos y.

Hence the problem of finding («, 8, ¥), so that the force F(J, m, n) may be perpen-
dicular toit, will be solved by substituting cos «, cos 3, cos ¢ for [, m, n in these equa-
tions. By the elimination of cos’a, cos 3, cos ¥ from the three equations thus obtained,
we have the well-known cubic determinantal equation, of which the roots, necessarily
real, lead, when no two of them are equal, to one and only one system of three
rectangular axes having the stated property.

Def. The three lines thus proved to exist for every possible homogeneous stress
are called its axes. The planes of their pairs are called its normal planes : the mutual
forces between parts of the body separated by these planes, or the forces on portions
of the bounding surface parallel to them, are called the principal tensions.

Cor. 1. The Principal Tensions of the stress are the roots of the determinant cubic
referred to in the demonstration. .

Cor. 2. If a stress be specified by the notation P(X), &c. as explained above, its
normal planes are the principal planes of the surface of the second degree whose
equation is

P(X)X?4Q(Y)Y*+R(Z)Z+2T(X)YZ+2T(Y) ZX +2T(Z)XY=1;

and its Principal Tensions are equal to the reciprocals of the squares of the lengths
of the semi-principal-axes of the same surface (quantities which are negative of course
for the principal axis or axes which do not cut the surface when the surface is a
hyperbolmd of one or of two sheets).

Cor. 3. The ellipsoid whose equation refer red to the Rectangular axes of a stress, is

(1=2eF)X? 4 (1=2¢G) Y+ (1 —2eH) Z*=1,

where F, G, H denote the Principal Tensions, and e any infinitely small quantity,
represents the stress, in the following manner :—

From any point P in the surface of the ellipsoid draw a line in the tangent plane
MDCCCLVI. 3s
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half-way to the point where this plane is cut by a perpendicular to it through the
centre; and from the end of the first-mentioned line draw a radial line to meet the
surface of a sphere of unit radius concentric with the ellipsoid. The tension at this
point of the surface of a sphere of the solid is in the line from it to the point P; and
its amount per unit of surface is equal to the length of that infinitely small line,
divided by e.

ArticLE IV.—On the Distribution of Displacement in a Strain.

Prop. In every homogeneous strain any part of the solid bounded by an ellipsoid,
remains bounded by an ellipsoid. '

For all particles of the solid in a plane remain in a plane, and two parallel planes
remain parallel. Consequently every system of conjugate diametral planes of an
ellipsoid of the solid retain the property of conjugate diametral planes with reference
to the altered curve surface containing the same particles. This altered surface is
therefore an ellipsoid.

Prop. There is a single system (and only a single system, except in the cases of
symmetry) of three rectangular planes for every homogeneous strain, which remain
at right angles to one another in the altered solid.

Def. These three planes are called the normal planes of the strain, or simply the
strain-normals. Their lines of intersection are called the axes of the strain.

Remark. The preceding propositions and definitions are applicable, to whatever
extent the body may be strained.

Prop. If a body, while experiencing an infinitely small strain, be held with one
point fixed and the normal planes of the strain parallel to three fixed rectangular
planes through the point, O; a sphere of the solid of unit radius having this point
for its centre becomes, when strained, an ellipsoid whose equation, referred to the
strain-normals through O, is

(1—22)X24 (1—2¢) Y2+ (1 — 22)Z2=1,

if z, y, x denote the elongations of the solid per unit of length, in the directions
respectively perpendicular to these three planes; and the position, on the surface of
this ellipsoid, attained by any particular point of the solid, is such that if a line be
drawn in the tangent plane, half-way to the point of intersection of this plane with a
perpendicular from the centre, a radial line drawn through its extremity cuts the
primitive spherical surface in the primitive position of that point. :
Cor. For every stress, there is a certain infinitely small strain, and conversely, for
every infinitely small strain, there is a certain stress, so related that if, while the
strain is being acquired, the centre and the strain-normals through it are held fixed,
the absolute displacements of particles belonging to a spherical surface of the solid
represent, in intensity (according to a definite convention as to units for the repre-
sentation of force by lines), and in direction, the force (reckoned as to intensity, in
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amount per unit of area) experienced by the enclosed sphere of the solid, at the
different parts of its surface, when subjected to the stress.

Def. A stress and an infinitely small strain so related are said to be of the same
type; and the ellipsoid, by means of which the distribution of force over the surface
of a sphere of unit radius is represented in one case and the displacements of particles
from the spherical surface are shown in the other, may be called the geometrical
type of either.

ArticLe V.—Conditions of Perfect Concurrence between Stresses and Strains.

Def. Two stresses are said to be coincident in direction, or to be perfectly con-
current, when they only differ in absolute magnitude. The same relative designations
are applied to two strains differing from one another only in absolute magnitude.

Cor. If two stresses or two strains differ by one being reverse to the other, they
may be said to be negatively coincident in direction; or to be directly opposed or
directly contrary to one another. ' _

Def. When a homogeneous stress is such that the normal component of the mutual
force between the parts of the body on the two sides of any plane whatever through
it is proportional to the augmentation of distance between the same plane and
another parallel to it and initially at unity of distance, due to a certain strain expe-
rienced by the same body, the stress and the strain are said to be perfectly concur-
rent; also to be coincident in direction. The body is said to be yielding directly to a
stress applied to it, when it is acquiring a strain thus related to the stress; and in
the same circumstances, the stress is said to be working directly on the body, or to
be acting in the same direction as the strain.

Cor. 1. Perfectly concurrent stresses and strains are of the same type.

Cor. 2. If a strain is of the same type as a stress, its reverse will be said to be
negatively of the same type, or to be directly opposed to the strain. A body is said
to be working directly against a stress applied to it when it is acquiring a strain
directly opposed to the stress; and in the same circumstances, the matter round the
body is said to be yielding directly to the reactive stress of the body upon it.

ArticLE V1.—Orthogonal Stresses and Strains.

Def. 1. A stress is said to act right across a strain, or to act orthogonally to a
strain, or to be orthogonal to a strain, if work is neither done upon nor by the body
in virtue of the action of the stress upon it while it is acquiring the strain.

Def. 2. Two stresses are said to be orthogonal when either coincides in direction
with a strain orthogonal to the other.

Def. 3. Two strains are said to be orthogonal when either coincides in direction
with a stress orthogonal to the other.

Examples.—(1) A uniform cubical compression, and any strain involving no alteration of volume,
are orthogonal to one another.

3s2
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(2) A simple extension or contraction in parallel lines unaccompanied by any transverse extension
or contraction, that is, “a simple longitudinal strain,” is orthogonal to any similar strain in lines at
right angles to those parallels.

(3) A simple longitudinal strain is orthogonal to a “simple tangential strain** in which the
sliding is parallel to its direction or at right angles to it.

(4) Two infinitely small simple tangential strains in the same planet, with their directions of
sliding mutually inclined at an angle of 45°, are orthogonal to one another.

(6) An infinitely small simple tangential strain is orthogonal to every infinitely small simple tan-
gential strain, in a plane either parallel to its plane of sliding or perpendicular to its line of sliding.

ArticLeE VII.—Composition and Resolution of Stresses and of Strains.

Any number of simultaneously applied homogeneous stresses are equivalent to a
single homogeneous stress which is called their resultant. Any number of super-
imposed homogeneous strains are equivalent to a single homogeneous resultant strain.
Infinitely small strains may be independently superimposed ; and in what follows it
will be uniformly understood that the strains spoken of are infinitely small, unless
the contrary is stated.

Examples.—(1) A strain consisting simply of elongation in one set of parallel lines, and a strain
consisting of equal contraction in a direction at right angles to it, applied together, constitute a
single strain, of the kind which that described in Example (3) of the preceding article is when infi-
nitely small, and is called a plane distortion, or a simple distortion. It is also sometimes called a
simple tangential strain, and when so considered, its plane of sliding may be regarded as either of
the planes bisecting the angles between planes normal to the lines of the component longitudinal
strains. :

(2) Any two simple distortions in one plane may be reduced to a single simple distortion in the
same plane.

(8) Two simple distortions not in the same plane have for their resultant a strain which is a
distortion unaccompanied by change of volume, and which may be called a compound distortion.

(4) Three equal longitudinal elongations or condensations in three directions at right angles to
one another, are equivalent to a single dilatation or condensation equal in all directions. The single
stress equivalent to three equal tensions or pressures in directions at right angles to one another is
a negative or positive pressure equal in all directions.

(5) If a certain stress or infinitely small strain be defined (Art. I1I. Cor. 3, or Art. IV.) by the
ellipsoid

(1+A)X24+(1+B)Y?*+ (1+C)Z?+ DYZ+EZX +FXY=1,
and another stress or infinitely small strain by the ellipsoid
(1+ANX24+(1+B)Y?+ (1 +CZ2+ D'YZ+ EZX + FXY =1,

where A, B, C, D, E, F, &c. are all infinitely small, their resultant stress or strain is that repre-

* That is, a homogeneous strain in which all the particles in one plane remain fixed, and other particles are
only displaced parallel to this plane. :

T ¢ The plane of a simple tangential strain,” or the plane of distortion in a simple tangential strain, is a
plane perpendicular to that of the particles supposed to be held fixed, and parallel to the lines of displacement
of the others.
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sented by the ellipsoid
1+A+ANX2+(1+B+B)Y2+(1+C+C)Z%+ (D ;i-D’)YZ+ (E+ENZX +(F+F)XY=1.

ArricLe VIII.—S8pecification of Strains and Stresses.

Prop. Six stresses or six strains of six distinct arbitrarily chosen types may be
determined to fulfil the condition of having a given stress or a given strain for their
resultant, provided those six types are so chosen that a strain belonging to any one
of them cannot be the resultant of any strains whatever belonging to the others.

For, just six independent parameters being required to express any stress or strain
whatever, the resultant of any set of stresses or strains may be made identical with
a given stress or strain by fulfilling six equations among the parameters which they
involve ; and therefore the magnitudes of six stresses or strains belonging to the six
arbitrarily chosen types may be determined, if their resultant be assumed to be iden-
tical with the given stress or strain.

Cor. Any stress or strain may be numerically specified in terms of numbers
expressing the amounts of six stresses or strains of six arbitrarily chosen types which
have it for their resultant. v

Types arbitrarily chosen for this purpose will be called types of reference. The
specifying elements of a stress or strain will be called its components according to
the types of reference. The specifying elements of a strain may also be called its
coordinates, with reference to the chosen types.

Ezamples.—(1) Six strains in each of which one of the six edges of a tetrahedron of the solid is
elongated while the others remain unchanged, may be used as types of reference for the specification
of any kind of strain or stress. The ellipsoid representing any one of those six types will have its
two circular sections parallel to the faces of the tetrahedron which do not contain the stretched side.

(2) Six strains consisting, any one of them, of an infinitely small alteration either of one of the
three edges, or of one of the three angles between the faces, of a parallelepiped of the solid, while
the other five angles and edges remain unchanged, may be taken as types of reference, for the
specification of either stresses or strains. In some cases, as for instance in expressing the probable
elastic properties of a crystal of Iceland spar, it'may be convenient to use an oblique parallelepiped
for such a system of types of reference ; but more frequently it will be convenient to adopt a system
of types related to the deformations of a cube of the solid, in the manner described.

(3) If AX?4+BY2+CZ+DYZ +EZX + FXY=1
be the equation of the surface of a portion of the solid referred to oblique or rectangular coordi-
nates, we may take the six strains, in any one of which the same portion of the solid becomes
altered in shape to a surface whose equation differs from the preceding only in having one of the six
coefficients altered by an infinitely small quantity, as six types of reference for specifying stresses

and strains in general.

ArticLe IX.— Orthogonal Types of Reference.

Def. A normal system of types of reference is one in which the strains or stresses
of the different types are all six mutually orthogonal (fifteen conditions). A normal
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system of types of reference may also be called an orthogonal system. The elements
specifying, with reference to such a system, any stress or strain, will be called ortho-
gonal components or orthogonal coordinates.

Examples.— (1) The six types described in Example (2) of Article VIII. are clearly orthogonal, if
the parallelepiped referred to is rectangular. Three of these are simple longitudinal extensions,
parallel to the three sets of rectangular edges of the parallelepiped. The remaining three are plane
distortions parallel to the faces, their axes bisecting the angles between the edges. They constitute
the system of types of reference uniformly used hitherto by writers on the theory of elasticity.

(2) The six strains in which a spherical portion of the solid is changed into ellipsoids having the
following equations— (1+A)X2+ Y2+ Z2=1

X2+(1+B)Y?+Z°=1
X2+ Y2+ (1+C)Z2=1
X*4+Y*+Z>+DYZ=1
X2+ Y2+ 722+ EZX =1
X2+ Y2+ 22+ FXY =1,

are of the same kind as those considered in the preceding example, and therefore constitute a nor-
mal system of types of reference. The resultant of the strains specified, according to those equa-
tions, by the elements A, B, C, D, E, F, is a strain in which the sphere becomes an ellipsoid whose
equation (see above, Art. VIL. Ex. (5)) is
(1+A)X?+(1+B)Y?*+(1+C)Z*+DYZ +EZX + FXY=1.

(3)* A uniform cubical compression (L.), three simple distortions having their planes at right
angles to one another and their axest bisecting the angles between the lines of intersection of these
planes (IL.) (IIL) (IV.), any simple or compound distortion consisting of a combination of longi-
tudinal strains parallel to those lines of intersection (V.), and the distortion (VL.), constituted from
the same elements which is orthogonal to the last, afford a system of six mutually orthogonal types
which will be used as types of reference below in expressing the elasticity of cubically isotropic solids.

ArticLe X.—On the Measurement of Strains and Stresses.

Def. Strains of any types are said to be to one another in the same ratios as
stresses of the same types respectively, when any particular plane of the solid
acquires relatively to another plane parallel to it, motions in virtue of those strains
which are to one another in the same ratios as the normal components of the forces
between the parts of the solid on the two sides of either plane due to the respective
stresses.

Def. The magnitude of a stress and of a strain of the same type, are quantities
which, multiplied one by the other, give the work done on unity of volume of a body
acted on by the stress while acquiring the strain.

* This example, as well as (7) of Art. X., (5) of XI., and the example of Art. XII., have been inserted to
prepare for an application of the theory of Principal Elasticities to cubically and spherically isotropic bodies,

added to the Second Part of this paper since the date of its communication.
1 The “ axes of a simple distortion” are the lines of its two component longitudinal strains.
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Cor. 1. If z, y, 2, & 7, { denote orthogonal components of a certain strain, and if
P,Q,R,S, T, U denote components, of the same type respectively, of a stress applied
to a body while acquiring that strain, the work done upon it per unit of its volume

will be Pz+Qy-+Rs+Se+Ty+UZ

Cor. 2. The condition that two strains or stresses specified by (2, v, z, & 2, {) and
(@, 9, %, €4, ) in terms of a normal system of types of reference, may be ortho-
gonal to one another, is

x2 +yy' +22' +E 4 +- LT =0.

Cor. 3. The magnitude of the resultant of two, three, four, five, or six mutually
orthogonal strains or stresses is equal to the square root of the sum of their squares.
For if P, Q, &c. denote several orthogonal stresses, and F the magnitude of their
resultant ; and z, y, &c. a set of proportional strains of the same types respectively,
and r the wagnitude of the single equivalent strain, the resultant stress and strain
will be of one type, and therefore the work done by the resultant stress will be Fr.
But the amounts done by the several components will be Pz, Qy, &c., and therefore

Fr=Px+4Qy+&c.

Now we have, to express the proportionality of the stresses and strains,
P Q F

—=—=&Cc.==

o 27y r
Each member must be equal to

P4 Q%+ &e.

Pz+Qy+&e.’
and also equal to

Pz+ Qy + &ec.

2412 - &e.

F P24+ Q%+ &ec. . .
Hence = + F;:I- c—, which gives =P+ Q*+&c.,
d Y e, which gives P=a"+y"+&

an r =Pt & which gives r’=2"+4y’+&c.

Cor. 4. A definite stress of some particular type chosen arbitrarily may be called
unity ; and then the numerical reckoning of all strains and stresses hecomes perfectly
definite. '

Def. A uniform pressure or tension in parallel lines, amounting in intensity to the
unit of force per unit of area normal to it, will be called a stress of unit magnitude,
and will be reckoned as positive when it is tension, and negative when pressure.

Ezamples—(1) Hence the magnitude of a simple longitudinal strain, in which lines of the body
parallel to a certain direction experience elongation to an extent bearing the ratio x to their original
dimensions, must be called x.

(2) The magnitude of the single stress equivalent to three simple pressures in directions at right
angles to one another each unity is — 43 ; a uniform compression in all directions of unity per unit
of surface, is a negative stress equal to +/3 in absolute value.
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(3) A uniform dilatation in all directions, in which lineal dimensions are augmented in the ratio
1:1+4a, is a strain equal in magnitude to #4/3; or a uniform “cubic expansion” E is a strain

equal to VE“é

(4) A stress compounded of a uniform unit pressure in one direction and an equal tension in a
direction at right angles to it, or which is the same thing, a stress compounded of two balancing
couples of unit tangential pressures in planes at angles of 45° to the direction of those forces and at
right angles to one another, amounts in magnitude to 4/2.

(5) A strain compounded of a simple longitudinal extension, #, and a simple longitudinal con-
densation of equal absolute value, in a direction perpendicular to it, is a strain of magnitude z4/2;
or, which is the same thing, (if ¢=22,) a simple distortion such that the relative motion of two planes
at unit distances parallel to either of the planes bisecting the angles between the two planes men-

[
ok

(6) If a strain be such that a sphere of unit radius in the body becomes an ellipsoid whose equa-
tion is

tioned above is a motion o, parallel to themselves, is a strain amounting in magnitude to

(1—A)X2+(1—B)Y2+ (1—C)Z*— DYZ—EZX—FXY=1,

the values of the component strains corresponding, as explained in Example (2) of Art. IX., to the
different coefficients respectively, are
D E F
1 1 1
i 2B, 0 575 2/2 242

For the components corresponding to A, B, C are simple longitudinal strains, in which diameters
of the sphere along the axes of coordinates become elongated from 2, to 2+ A, 2+ B, 2+C respect-
ively ; D is a distortion in which diameters in the plane YOZ, bisecting the angles YOZ and Y'OZ,
become respectively elongated and contracted from 2 to 2+ 4D, and from 2 to 2—1D; and so for
the others. Hence, if we take #, y, 2, £, 4, { to denote the magnitudes of six component strains,
according to the orthogonal system of types described in Examples (1) and (2) of Art. IX., the
resultant strain equivalent to them will be one in which a sphere of radius 1 in the solid becomes an
ellipsoid whose equation is

(1—22)X2+ (1—2y) Y2+ (1 —22) 22— 2V 2({YZ +4ZX + ¢XY) =1,
and its magnitude will be
V(@@ +y*+ 24+ 824+ + ).
(7) The specifications, according to the system of reference used in the preceding Example, of

unit strains belonging to the six orthogonal types defined in Example (3) of Art. IX., are respectively
as follows : —

2 |y 2 & |91 ]|¢
111
L) Z=l7zlesl 0l 0o
(IL) o|ojo|1|0]o0
QL) o|lojo|o|1]o0
@v)y o|loflojo o1
(V.) tim|=n|0]0/|O0
(VL) 7 |w |7 | 0|0 o0
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where [, m, n, I', m'y n' denote quantities fulfilling the following conditions :—
2 4+m? +n? =1,
! +m +n =0,
' +mm! +nn! =0,
2gml =1,
I'+m' +2' =0.
(8) If (1—2eP)X%+ (1 —2¢Q)Y?+ (1 —2¢R)Z2—2¢//2(SYZ + TZX + UXY)=1
be the equation of the ellipsoid representing a certain stress, the amount of work done by this stress,
if applied to a body while acquiring the strain represented by the equation in the preceding example,
will be Pz+Qy+Rz+Sg+Ty+ UL
Cor. Hence, if the variables X, Y, Z be transformed to any other set (X', Y/, Z/) fulfilling the con-
dition of being the coordinates of the same point, referred to another system of rectangular axes,
the coefficients , y, z, &c., z,, ¥}, 2, &c. in two homogeneous quadratic functions of three variables,
(1—22)X?+ (1 —2y)Y?+ (1—22)Z*— 2V 2(§YZ +9ZX + {XY)
(1—22)X2+(1—2y) Y2+ (1—22)Z2—2+/2(§ YZ + 0 ZX + § XY),
and the corresponding coefficients 2/, ¥/, #/, &c., z,y, z:, &ec. will be so related that
.z-'.z",+y’y:+z’z:+f’f:—i-n"q:-}-{'{,J,:.znz‘l+yyl+zz,+£El+wl-{- 83

or the function z@, +yy,+2z,+ £, + 1, + &, of the coefficients is an “invariant™ for linear transforma-
tions fulfilling the conditions of transformation from one to another set of rectangular axes. Since
#+y+2zand z,+ y,+ z,are clearly invariants also, it follows that AA, + BB, + CC,+2DD, + 2EE, + 2FF,
is an invariant function of the coefficients of the two quadratics

AX®4 BY24CZ?+2DYZ+2EZX + 2FXY
and AX24+BY*+CZ2+2DYZ+2EZX +2F XY,

and

which it is easily proved to be by direct transformation,

ArTicLE X1.—On Imperfect Concurrences of two Stress or Strain-types.

Def. The concurrence of any stresses or strains of two stated types, is the propor-
tion which the work done when a body of unit volume experiences a stress of either
type while acquiring a strain of the other, bears to the product of the numbers
measuring the stress and strain respectively.

Cor. 1. In orthogonal resolution of a stress or strain, its component of any stated
type is equal to its own amount multiplied by its concurrence with that type; or the
stress or strain of a stated type which, along with another or others orthogonal to it
have a given stress or strain for their resultant, is equal to the amount of the given
stress or strain reduced in the ratio of its concurrence with that stated type.

Cor. 2. The concurrence of two coincident stresses or strains is unity; or a per-
fect concurrence is numerically equal to unity.

Cor. 3. The concurrence of two orthogonal stresses and strains is zero.

Cor. 4. The concurrence of two directly opposed stresses or strains is —1,
MDCCCLVE 37
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Cor. 5. If , Y, %, & n, {, are orthogonal components of any strain or stvess, r, its
concurrences with the types of reference are respectively

2y 2§t
rrrororor
where ;
r=(a*+y*+2"+8+r+ )
Cor. 6. The mutual concurrence of two stresses or strains is
I +mm' 4nn 2N+ pp! 0,

if (I, m, n, A, p, v) denote the concurrences of one of them with six orthogonal types
of reference, and (7, m', #', X', ¢, /) those of the other.

Cor. 7. The most convement specification of a type for strains or stresses, being
in general a statement of the components, according to the types of reference, of a
unit strain or stress of the type to be specified, becomes a statement of its concurrences
with the types of reference when these are orthogonal.

Ezamples.—(1) The mutual concurrence of two simple longitudinal strains or stresses, inclined to
one another at an angle 0, is cos®d.

(2) The mutual concurrence of two simple distortions in the same plane, whose axes are inclined
at an angle § to cne another, is cos® §—sin?, or 2 sin (45°—4) cos (45°—6).

Hence the components of a simple distortion, 3, along two rectangular axes in its plane, and two
others bisecting the angle between these taken as axes of component simple distortions, are

3 (cos? 9 —sin®4) and 3.2 s8in § cosd

respectively, if § be the angle between the axis of elongation in the given distortion and in the ﬁrst
component type.
(3) The mutual concurrence of a simple longitudinal strain and a simple distortion is
~/2.cos acos B,

if @ and 8 be the angles at which the direction of the longitudinal strain is inclined to the line
bisecting the angles between the axes of the distortion ; it is also equal to

7}—2 (cos? ¢ — cos?y),

if ¢ and ¥ denote the angles at which the direction of the longxtudmal strain is inclined to the axis
of the distortion.

(4) The mutual concurrence of a simple longitudinal strain and of a uniform dilatation is —= V 3

(5) The specifying Qlementa exhibited in Example (7) of the preceding article, are the concur-
rences of the new system of orthogonal types described in Example (3) of Art. I1X., with the ordi-
nary system, Examples (1) and (2), Art. IX.

ArtICLE XI1.—On the Transformation of Types of Reference for Stresses or Strains.

To transform the specification (z, y, =, §, 2, {) of a stress or strain with reference |
to one system of types into (,, ,, ,, 2,, T3, 2;) with reference to another system of
types. Let (a, b, c,, e, f,, g,) be the components, according to the original system,
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of a unit strain of the first type of the new systemn ; let (a,, b,, c,, €,, 13, g5) be the cor-
responding specification of the second type of the new system; and so on. Then we
have, for the required formula of transformation,

LTRSS RN RS RN ST P P

y=bux,+ by, + byt by, 4 by, 4 bexs,

.....................

.....................

gz"glxx+g2'772+gaxs+g4m4+gsw5+gﬁxﬁ‘

Example. The transforming equations to pass from a specification (2, y, 2, &, v, {) in terms of the
system of reference used in Examples (6) and (7), Art. X., to a specification ¢, £, v, {, @, @ in terms
of the new system described in Example (3) of Art. IX., and specified in Example (7) of Art. X.,
are as follows : —

1
z= V—gd’+l@ +lw,

1 ]
y_%cr-i—mw-l-mw,

2= :}‘3” +nw +nlw,
E=E n=n, §=8;
where, as before stated, 7, m, n, #, m/, #' are quantities fulfilling the conditions

2 4m? +n? =1,

I +m +n =0,

Pym® fn2=1,

' +m +# =0,

' +mm + n’ =0.

PART II. ON THE MECHANICAL CONDITIONS OF RELATION BETWEEN STRESSES AND
STRAINS, EXPERIENCED BY AN ELASTIC SOLID.

ArticLe XII1.—Interpretation of the Differential Equation of Energy.

Ina paper on the Thermo-elastic Properties of Matter, published in the first Number
of the Quarterly Mathematical Journal (April 1855), it was proved from general
principles in the theory of the Transformation of Energy, that the amount of work
(w) required to reduce an elastic solid, kept at a constant temperature, from one
stated condition of internal strain to another, depends solely on these two condi-
tions, and not at all on the cycle of varied states through which the body may have
been made to pass in effecting the change, provided always there has been no failure
in the elasticity under any of the strains it has experienced. Thus for a homogeneous
solid homogeneously strained, it appears that w is a function of six independent vari-
ables @, y, %, & 7, {, by which the condition of the solid as to strain is specified.
Hence to strain the body to the infinitely small extent expressed by the variation from
(%, Y, %, & 7, {) to (x-+4dx, y+dy, 3+ dz, E4-dE, n-dn, {+dZ), the work required to be
done upon it is

dw “dw dw dw dw dw
wle+ gyt dx g dit g dn+7g 8.
312
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The stress which must be applied to its surface to keep the body in equilibrium in
the state (2, y, =, , 7, {) must therefore be such that it would do this amount of work
if the body, under its action, were to acquire the arbitrary strain dv, dy, dz, d&, dr, dZ;
that is, it must -be the resultant of six stresses; one orthogonal to the five strains

dy, dz, d%, dy, dZ, and of such a magnitude as to do the work %dx when the body

acquires the strain dx; a second orthogonal to dx, dz, d&, dn, dZ, and of such a mag-

nitude as to do the work %Evdy when the body acquires the strain dy ; and soon. If
:’/ k)

a, b, ¢, f, g, h denote the respective concurrences of these six stresses, with the types
of reference used in the specification (x, y, 2, &, 7, {) of the strains, the amounts of the
six stresses which fulfil those conditions will (Art. XI.) be given by the equations

_ldw 1 dw 1 dw

P-——E EZ" Q‘-:Z @’ R:—’g E;’
1 dw 1 dw 1 dw
=r& T=;& U=iw

and the types of these component stresses are determined by being orthogonal to the
fives, of the six strain-types wanting the first, the second, &ec. respectively.

Cor. If the types of reference used in expressing the strain of the body constitute
an orthogonal system, the types of the component stresses will coincide with them,
and each of the concurrences will be unity. Hence the equations of equilibrium of
an elastic solid referred to six orthogonal types are simply

P=%. Q=9 R=%

fliu hw dw

: d _

b_df’ T=%9 U_EZ

ArricLe XIV.— Reduction of the Potential Function, and of the Equations of
Equilibrium, of an Elastic Solid to their simplest Forms.

If the condition of the body from which the work denoted by w is reckoned be
that of equilibrium under no stress from without, and if x, y, 2, &, 4,  be chosen each
zero for this condition, we shall have, by MacLAURIN'S theorem,

w=H,(», y, %, & n, Q) +H,(, 9, %, & 2, )+ &e.,

where H,, H;, &c. denote homogeneous functions of the second order, third order,

&c. respectively. Hence ‘%’, %;/—}, &c. will each be a linear function of the strain-

coordinates, together with functions of higher orders derived from H,, &c. But ex-
perience shows that within the elastic limits, the stresses are very nearly if not quite
proportional to the strains they are capable of producing; and therefore H,, &c.
may be neglected, and we have simply

w:I‘Iﬂ(.L', Yy %, 8, 1, g)
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Now in general there will be 21 terms, with independent coefficients, in this function ;
but by a choice of types of reference, that is, by a linear transformation of the inde-
pendent variables, we may, in an infinite variety of ways, reduce it to the form

w=4%(A2’+By’+ C2*4-F&4- G+ HE).
'The equations of equilibrium then becotme

P=é‘.l', Q=Zy, R-——'%Z,

a

S=2¢, =, U=,
the simplest possible form under which they can be presented. The interpretation
is expressed as follows.
Prop. An infinite number of systems of six types of strains or stresses exist in any
given elastic solid such that, if a strain of any one of those types be impressed on the
body, the elastic reaction is balanced by a stress orthogonal to the five others of the

same system.

ArricLe XV.—On the Siz Principal Strains of an Elastic Solid.

To reduce the twenty-one coefficients of the quadratic terms in the expression for
the potential energy to six by a linear transformation, we have only fifteen equations
to satisfy ; while we have thirty disposable transforming coefficients, there being five
independent elements to specify a type, and six types to be changed. Any further
condition expressible by just fifteen independent equations may be satisfied and makes
the transformation determinate. Now the condition that six strains may be mutually
orthogonal, is expressible by just as many equations as there are of different pairs of
six things; that is fifteen. The well-known algebraic theory of the linear trans-
formation of quadratic functions shows for the case of six variables, (1) that the six
coefficients in the reduced form are the.roots of a  determinant” of the sixth degree
necessarily real ; (2) that this multiplicity of roots leads determinately to one, and
only one system of six types fulfilling the prescribed conditions unless two or more of
the roots are equal to one another, when there will be an infinite number of solutions
and definite degrees of isotropy among them; and (3) that there is no equality
between any of the six roots of the determinant in general, when there are twenty-
one independent coeflicients in the given quadratic.

Prop. Hence a single system of six mutually orthogonal types may be determined
for any homogeneous elastic solid, so that its potential energy when homogeneously
strained in any way is expressed by the sum of the products of the squares of the
components of the strain, according to those types, respectively multiplied by six
determinate coefficients.

Def. The six strain-types thus determined are called the Six Principal Strain-types
of the body.
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The concurrences of the stress-components used in interpreting the differential
equation of energy with the types of the strain-coordinates in terms of which the
potential of elasticity is expressed, being perfect when these constitute an orthogonal
system, each of the quantities denoted above by a, b, c, £, g, %, is unity when the six
principal strain-types are chosen for the coordinates. The equations of equilibrium
of an elastic solid may therefore be expressed as follows :—

P=Az, Q=By, R=Cx,
S=F¢, T=Gy U=H{
where @, y, %, & 2, { denote strains belonging to the six Principal Types, and P, Q,
R, S, T, U the components according to the same types, of the stress required to
hold the body in equilibrium when in the condition of having those strains. The
amount of work that must be spent upon it per unit of its volume, to bring it to
this state from an unconstrained condition, is given by the equation
w=3%(Ar’+By’+ Cz*+ F& + Go*+ HQ).
Def. The coefficients A, B, C, F, G, H are called the six principal Elasticities of
the body. 7
The equations of equilibrium express the following propositions :—
Prop. If a body be strained according to any one of its six Principal Types, the
stress required to hold it so is directly concurrent with the strain.

Examples inserted September 16, 1856.

(1) If a solid be cubically isotropic in its elastic properties, as crystals of the cubical class pro—
bably are, any portion of it will, when subjected to a uniform positive or negative normal pressure
all round its surface, experience a uniform condensation or dilatation in all directions, Hence a
uniform condensation is one of its six Principal Strains. Three plane distortions with axes bisect-
ing the angles between the edges of the cube of symmetry are clearly also principal strains, and
since the three corresponding principal elasticities are equal to one another, any strain whatever
compounded of these three is a principal strain. Lastly, a plane distortion whose axes coincide
with any two edges of the cube, being clearly a principal distortion, and the principal elasticities
corresponding to the three distortions of this kind being equal to one another, any distortion com-
pounded of them is also a principal distortion.

Hence the system of orthogonal types treated of in Examples (3) Art. IX., and (7) Art. X, or
any system in which, for (IL), (IIL), and (IV.), any three orthogonal strains compounded of them
are substituted, constitutes a system of six Principal Strains in a solid cubically isotropic. There
are only three distinct Principal Elasticities for such a body, and these are (A) its cubic com-
pressibility, (B) its rigidity against diagonal distortion in any of its principal planes (three equal
elasticities), and (C) its rigidity against rectangular distortions of a cube of symmetry (two equal
elasticities).

(2) In a perfectly isotropic solid, the rigidity against all distortions is equal. Hence the
rigidity (B) against diagonal distortion must be equal to the rigidity (C) against rectangular distor-
tion, in a cube; and it is easily seen that if this condition is fulfilled for one set of three rectangular
planes for which a substance is isotropic, the isotropy must be complete. The conditions of perfect
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or spherical isotropy are therefore expressed in terms of the conditions referred to in the preceding
example, with the farther condition, B=C.

A uniform condensation in all directions, and any system whatever of five orthogonal distortions,
constitute a system of six Principal Strains in a spherically isotropic sclid. Its Principal Elasticities
are simply its Cubical Compressibility and its Rigidity.

Prop. Unless some of the six Principal Elasticities be equal to one another, the
stress required to keep the'body strained otherwise than according to one or other of
six distinct types is oblique to the strain.

Prop. The stress required to maintain a given amount of strain is a maximum or
minimum if of one of the six Principal Types.

Cor. If A be the greatest and H the least of the six quantities A, B, C, F, G, H, the
principal type to which the first corresponds is that of a strain requiring a greater stress
to maintain it than any other strain of equal amount; and the principal type to which
the last corresponds is that of a strain which is maintained by a less stress than any
other strain of equal amount in the same body. The stresses corresponding to the
four other principal strain-types have each the double, maximum and minimum,
property in a determinate way.

Prop. If a body be strained in a direction of which the concurrences with the
principal strain-types are I, m, n, A, w, », and to an amount equal to r, the stress
required to maintain it in this state will be equal to Qr, where

Q_:(A2l2+B2m2+Czn2+F27\2+G21w2+szz)é,
and will be of a type of which the concurrences with the principal types are respectively
Al Bm Cn Fr Gp Hy

[N RO A O 0}

Prop. A homogeneously strained elastic solid, crystalline or non-crystalline, subject
to magnetic force or free from magnetic force, has neither any right-handed or left-
handed, nor any dipolar, properties dependent on elastic forces simply proportional
to strains. ‘ ‘

Cor. 1. The elastic forces concerned in the luminiferous vibrations of a solid or
fluid medium possessing the ¢ right- or left-handed isotropic axial property,” or the
completely ““isotropic rotatory property,” (such as quartz crystal, right- or left-handed
tartaric acid, solution of sugar,) or the dipolar axial rotatory property discovered by
Farapay in his heavy glass and other transparent bodies, solid and flaid, in the
wagnetic field, either depend on the heterogeneousness or on the magnitude of the
strains experienced.

Hence as they do not depend on the magnitude of the strain, they do depend on
its heterogeneousness through the portion of the medium containing a wave.

Cor. 2. There cannot possibly be any characteristic of elastic forces simply propor-
tional to the strains in a homogeneous body, corresponding to certain peculiarities
of crystalline form which have been observed; for instance corresponding to the
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plagiedral faces, discovered by Sir Joun HEerscHEL to indicate the optical character,
whether right-handed or left-handed, in different specimens of quartz crystal, or cor-
responding to the distinguishing characteristics of the crystals of the right-handed
and left-handed tartaric acids, obtained by M. PasTteur from racemic acid, or corre-
sponding to the dipolar characteristics of form said to have been discovered in elec-
tric crystals.

ArticLe XVI.—dpplication of Conclusions to Natural Crystals.

In a paper on the Thermo-elastic Properties of Matter, which I hope to be able
before long to lay before the Royal Society of Edinburgh, I intend to demonstrate
that a body, homogeneous when regarded on a large scale, may be constructed to
have twenty-one arbitrarily prescribed values for the coefficients in the expression for
its potential energy in terms of any prescribed system of strain coordinates. This
proposition was first enunciated in the paper on the Thermo-elastic Properties of
Solids, published last April in the Quarterly Mathematical Journal alluded to above.
We may infer the following. |

Prop. A solid may be constructed to have arbitrarily prescribed values for its six
Principal Elasticities and an arbitrary orthogonal system of six strains, specified hy
fifteen elements, for its principal strain-types; having, for instance, five arbitrarily
chosen systems of three rectangular axes, for the normal axes of five of the principal
strains, and those of the sixth consequently in general distinct from all the others.

Cor. There is no reason for believing that natural crystals do not exist for which
there are six unequal Principal Elasticities, and six distinct strain-types for which
the three normal axes constitute six distinct sets of three principal rectangular axes
of elasticity.

It would be easy to add arbitrary illustrative examples regarding Principal Elasti-
cities, and to investigate the principal strain.types and the equations of elastic force
veferred to them or to other natural types, for a body possessing the kind of symmetry

as to elastic forces that is possessed by a crystal of Iceland spar or by a crystal of
 the cubical class (which may be included with the former in an investigation on a
very obvious plan).



